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1 Introduction

One of the central issues in restructuring compiler is to discover parallelism automatically
and generate correct parallel control structures that can take advantage of the large number
of processors. The advent of massively parallel machines opens up opportunities for pro-
grams that have large-scale parallelism to gain tremendous performance over those that do
not. This paper presents new loop transformation techniques that can extract more paral-
lelism from a class of programs than existing techniques. The particular class of programs
are those that consist of perfectly nested loops possibly with conditional statements where
the guards as well as the array index expression are affine expressions of the loop indices.

Organization of the Paper To make this paper self-contained, we describe the notations
and terminologies of the basic concepts relating to data dependence and loop transformation
in Section 2. We then present a formal mathematical framework which unifies the existing
loop transformation techniques, and sets the stage for discussing the more general classes of
loop transformers in Section 3. A loop transformer is a function that relates a given loop nest
with its transformed version, and consists of two parts: a spatial morphism, and a temporal
morphism, called a schedule. Next, in Section 4, we classify schedules by the properties of
uniformity and the degree of parallelism to be gained, and describe the functional forms of
the schedules for each class. Existing loop transformation techniques are given as examples
of these classes of schedules.

In Section 5, we review Quinton's algorithm for obtaining single-sequential level uniform
schedules and present the problem formulations for two new classes of schedules, namely,
subdomain schedules and statement-variant schedules and the algorithms to generate them.
The generation of subdomain schedules requires non-linear programming, and an alternative
heuristic algorithm using linear programming is given.

Section 6 describes an iterative algorithm to obtain multiple-sequential level schedules
based on the algorithms for single-sequential level schedules. Section 7 presents a recursive
algorithm to generate mixed schedules that result in imperfectly nested loops, again using
the algorithms for single-sequential level schedules as the basic step.

Finally, we illustrate the usefulness of the new loop transformation techniques with an
example program in Section 8. Versions of the transformed program using different schedules
are implemented on a Connection Machine CM/2. The difference in performance, which is
essentially due to the available parallelism determined by the schedule, can amount to two
orders of magnitude.

Previous Work Numerous techniques such as statement reordering, loop vectorization,
interchanging, permutation and skewing used in restructuring compilers [1, 2, 3, 4, 5, 6, 7, 8,
9, 20, 21, 33, 34, 37], have been proven effective in gaining parallelism for vector computers
and small-scale shared memory parallel machines.

Much work in the area of mapping recurrence equations to systolic architectures [11, 12,
15, 17, 19, 24, 26, 25, 27, 28, 29, 30], in contrast, focuses on developing algorithms for loop
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skewing.

Guerra [14] and Lin [22] discussed different transformation functions over different sub-
domains of the the iteration space of a loop nest very similar to the subdomain schedules
presented here. But they have not described any algorithms for generating such schedules.

Delosme [12] and Rao [31] discussed different transformation functions over different
subsets of the set of loop statements. To date, there has not been any automated procedure
for doing such a transformation.

In all previous work on loop transformation, dependence vectors and dependence direc-
tion vectors are all that are needed. And for the type of loop nests of interest, there are
constant numbers of such vectors. In order to generate subdomain and statement-variant
schedules, we need actually to capture the dependence index pair where a dependence rela-
tion occurs. The problem is that there are many such pairs that need to be considered, and
they can be infinitely many when the loop bounds are unknown at compile time. We need
to rely on a technique called polyhedra decomposition [13, 30, 32] to manage the complexity
of the algorithm.

Some recent work attempting to formalize loop transformations requires the transfor-
mation functions to be unimodular [7, 8, 33]. We will show that this requirement is not
essential, and allow a much more general class of functions to be used as a loop transformer.

2 Definitions and Terminologies

Throughout this paper, programming examples are written in a Fortran-like notation al-
though the transformation techniques also apply to functional languages.

Index Domains Let [a, b] be an interval domain of integers from a to b. We define an
index domain D (also called an iteration space in [34]) of a d-level perfectly nested loop

Loop Nest 1

DO (il = 11,U1)
DO ( ... )f

DO (id =ld, Ud){

body}

to be the Cartesian product [Ii, U1] X ... X [ld, Ud] of d interval domains [Ik, Uk] for 1 < k < d.

For the purpose of formulating loop transformations, we consider D to be a subset of
the d-dimensional vector space over rationals. Throughout the paper, we let I = (il,..., id)

and J = (1,. .. ,jd). With the domain and tuple notations, Loop Nest 1 can be rewritten
as follows:

2



Loop Nest 2

DO (I:D){

body }

In this paper, we focus on sequential loop nests which are perfectly nested. We use the
following loop nest as a generic example throughout the paper, where D is a d dimensional
index domain and r[a] is an expression containing a:

Loop Nest L (Generic Loop Nest)

DO (I:D){

S1 : IF(P 1) A(X(I)) =

S2 : IF(P 2) B(Z(I)) = r[A(Y(I))]

Data Dependence We now define dependence between statements. Let S1 and S2 be
two statements of a program. A flow dependence exists from S to S2 if S1 writes data
that can subsequently be read by S2. An anti-dependence exists from S to S2 if S, reads
data that S2 can subsequently overwrite. An output dependence exists from S1 to S2 if S1
writes data that S2 can subsequently overwrite. We use the notation S = S2 to denote a
dependence from S to S 2 .

Equivalence Classes over Statements in a Loop Nest Let "=4" be the reflexive
and transitive closure of the dependence relation "=" over statements. We define a binary
operation "-" over statements where S - S2 if S =. S 2 and S2 =; S1. Note that "," is
an equivalence relation, and therefore, partitions loop statements into equivalence classes
(called ir blocks in [34]). The technique of loop fission [34] can be applied to spilt the loop
nest into several new loop nests, one for each equivalence class.

Dependent versus Independent Blocks By the definition of the equivalence relation
a single statement which is not self-dependent can form an equivalence class on its

own. This case must be distinguished from all others where cyclic dependences actually
occur. We call this special case of an equivalence class under the dependence relation an
indepensdent block, and others dependent blocks. For example, consider the following loop
nest:
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I
Loop Nest 3

DO (i=1,n){

DO (j =i+1,n){

S1 A(i,j - i) = B(i,j - i - 1)

S2: B(i,j- i) = A(i- 1,j- i)

S3 : C(i,j) = A(i,j)+ B(i- 1,j+ 1)}}

Statements S1 and S2 are in the same dependent block because of cyclic flow dependences,
and statement S3 forms an independent block. Loop fission can be applied to split Loop
Nest 3 into two new loop nests:

Loop Nest 4

DO (i=1,n){

DO (j= i + 1,n){

Si: A(i,j - i) = B(i,j - i - 1)

S2: B(ij - i) = A(i - ,j - i) } }
DO (i=1,n){

DO (j = i + 1,n){

S 3 : C(ij) = A(ij)+ B(i - 1,j+ 1) } }

Loop fission can be used to separate an independent block from other dependent blocks,
and the new loop nest consisting of one independent block is readily parallelizable. Similarly,
loop fission can be used to transform a loop body containing multiple dependent blocks
into multiple loop nests, each with a single dependent block. We therefore consider the case
that Loop Nest L consists of one dependent block for the rest of the paper. A loop nest
consisting of a dependent block may be parallelized by several techniques, namely statement
reordering, loop vectorization, interchanging and permutation [7, 34]. To determine whether
these transformations are applicable or not, the notion of a direction vector [34] is necessary.

Direction Vectors Consider Loop Nest L. For statement S 2 to compute the value B(Z(J))
at iteration J, the value A(Y(J)) is needed. If A(Y(J)) is computed from statement S,
at iteration I, i.e. Y(J) = X(I), then we say S 2 at iteration J is flow dependent on S1 at
iteration I, denoted by S10I =: S2 @J.

For a dependence S1@I :" S2 J, the vector (sig(i1 - ji),.. .,sig(id - id)) is called a
direction vector from S to S2 [34], where sig is a function from the set of integers to the
set of ordering relations "<", "=", and ">":

sig(z)= z:0-- (1)

z > 0 -- "
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Dependence Vectors Loop skewing is another transformation which may expose more
parallelism, if the parallelism gained from the above-mentioned techniques is insufficient.
In order to do loop skewing, we need to know the relative positions of index tuples I and J
for each dependence S 1 @I =*, S2@J [25, 34]. For a dependence S 1@I =* S2 OJ, the vector
(il - il..., jid - id) is called a dependence vector from S, to S 2 [34].

Since I and I are in the d-dimensional vector space, we use I+ J to denote the addition of
two vectors I and J, i.e. I+J = (il+jl,. . ., id+jd); and similarly, J-I = (jl-il, .. . ,jd-id).

Notation for Concatenation Since we will be using matrix and vector notations ex-
tensively, we define the notation for matrix concatenation here. We treat a row vector of
length d as a degenerate 1-by-d matrix, a column vector of length d as a degenerate d-by-1
matrix, and a scalar as a degenerate 1-by-1 matrix.

A horizontal concatenation of an i-by-m matrix A and an i-by-n matrix B, denoted by
[A, B], is an i-by-(m-+n) matrix, where the (i, j)-th element of [A, B] is equal to the (i, j)-th
element of A if j <r m, or it is equal to the (ij - m)-th element of B if j > m.

A vertical concatenation of an m-by-i matrix A and an n-by-l matrix B, denoted by

[A], is an (m + n)-by-i matrix, where the (ij)-th element of [ A ] is equal to the

(i,j)-th element of A if i < m, or it is equal to the (i - m,j)-th element of B if i > rn.

3 Formalizing Loop Transformation

We now formalize the notion of loop transformation from a source loop nest to a target
parallel loop nest. A loop transformer is a function defined over the Cartesian product
of the iteration space of the loop nest and the set of statements in the body of the loop
that relates a given loop nest with its transformed version. From the standpoint of symbolic
transformation of the program text, a loop transformer can be decomposed into two compo-
nents: the first component, called domain norphism, defines how the iteration space should
be mapped to a new one (with new loop bounds and possibly new predicates guarding the
loop body), and the second component, called statement reordering function, defines the
ordering of the statements in the transformed loop nest. The process of obtaining a loop
transformer, however, suggests another decomposition: a temporal morphism and a spatial
morphism.

3.1 Loop Transformer and Schedule

Kinds of Index Domains For the purpose of loop transformation, it is useful to indicate
how the index domain shall be interpreted. We do this by defining kinds of index domains.
The kind of an interval domain D can be either spatial or temporal. The kind of a product
domain is the product of the kinds of the component domains. For example, D1 x D2 is of
kind temporalxspatial if D1 is of kind temporal and D2 is of kind spatial. A single-level
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loop with a temporal index domain corresponds to a sequential loop (i.e. DO), while a
spatial index domain corresponds to a parallel loop (i.e. DOALL).

Lexicographical Ordering We use the following notations to denote lexicographical
ordering on elements X and Y of an n-dimensional index domain. We define "-<" to be the
lexicographical ordering: we say X -< Y if there exists k, 1 < k < n, such that xl = y for
all 1, 1 < k, and Xk < Yk. Similarly, we say X - Y if X -< Y or xk = Yk for all k, 1 < k < n.
We use 6 to denote the zero vector.

Domain Morphism We define a domain morphism to be a bijective function g from
index domain D to index domain E, denoted by g:D --* E, such that for all dependences
SIGI *' S 20J, condition g(J) - g(I) k 0 holds. In other words, a domain morphism will
never reverse the ordering imposed by dependence relations.

In this paper, we restrict the codomain E of a domain morphism to be a cross product
of a temporal index domain El and a spatial index domain E2, i.e. E = El x E2. Under
this restriction, all parallel loops are innermost loops in the transformed loop nest. We

define g, and g2 to be two functions:

gl D El, (called a temporal morphism) and (2)

2D E 2. (called a spatial morphism) (3)

Under domain morphism g, index I in the original loop will be mapped to index J = g(I)
in the transformed loop nest. Since g is bijective, it has a well-defined inverse, denoted by
g- 1 . Clearly, I = g-(J). The following loop nest

Loop Nest 5

DO ((I:D)){

... A(X(I)) ... }

will be transformed into the following new loop nest under domain morphism
g:D --+ E1 x E 2 :

Loop Nest 6

DO ((Ji:Ei)){

DOALL ((J 2 :E2 )){

.. A(X(g 1l J .)

where Jdenotes the vertical concatenation of two column vectors J, and J2.
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The requirement of g to be surjective is in fact not essential. For any injective function
g':D -+ E, we can always derive a corresponding bijective function g:D --+ {g'(I) I I E D}
from D to the image of D under g' [11]. Therefore, by allowing the codomain of a bijective
function to be the image of an injective function, we allow a much more general class of
functions to be used as domain morphism. For comparison, the unimodular transformations
discussed in [8, 33] are special classes of bijective functions. The generality does require some
nontrivial algebraic manipulation to generate correct loop bounds and predicates to guard
the conditional statements in the transformed loop nest. An automatic transformation
procedure for doing this based on an equational theory is described in [11].

Statement Reordering We now discuss statement reordering. Let S denote the set of
statements in the loop body. We define a statement reordering to be a function h from the
set of statements to the set of statement labels:

r:S -+ [0, s - 1], where s = ISI, the number of statements in S. (4)

Loop Transformer With g and r defined above, the following function h, called the loop
transformer, specifies how a loop nest is transformed:

h:D x S -+ E x E 2 x [0,-1] (5)

h(I, S) = (g1(1), 92(I), r(S)).

Schedule Given h defined above, a schedule r is defined to be a function

ir:D x S -- + E1 x [0,s- 1] (6)

7r(I, S) = (gi(I), r(S)),

such that condition 7r(J, S2) - 7r(I, SI) >- 6 must hold for all dependences SIGI => S20J

in the loop nest. The condition ensures that the ordering imposed by dependence relations
is preserved. Clearly, a schedule determines the sequential c.cecution of the transformed
parallel loop nest. Note that by the definition of domain morphism, gl(J) - g,(I) can be
equal to the zero vector, i.e. S1 @I and S2@J can be computed at the same iteration in the
transformed loop nest. In this case, statement S must be in front of statement S2 in the
loop body, i.e. condition r(SI) < r(S 2) must hold, to preserve the dependence ordering.

3.2 Overall Procedure to Obtain a New Loop Nest

Finding a schedule ir is to understand what is the potential parallelism that can be extracted
from the source program. There may be alternative schedules which are incomparable
without a target machine model. Traditional loop transformation uses an ad hoc approach
in choosing a particular schedule out of several alternative ones. A systematic, cost-driven
approach to choose alternative schedules is beyond the scope of this paper. This paper gives
algorithms to find schedules which result in maximal parallelism of the innermost loops.
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The so-called strip mining [34] and tiling [33, 36] of loops are captured by the spatial

morphism 92. The choice of g2, which depends on factors such as memory and processor
organization and communication cost, can be dealt with separately and is not included in
this paper. However, given a schedule 7r = (gl, r), a valid 92 should keep a loop transformer

h = (gl, 92, r) injective. In this paper, we use the following default spatial morphism for
all the examples: g2(i1,...,i) = (ir,...,ip,), so as to result in a loop transformer h that
is injective, where n is the dimensionality of the spatial index domain E 2 , {P,-. ,Pn} is a
subset of interval domain [1, d], and P, - ... < p.

Overall Procedure To summarize, the overall procedure to obtain a new loop nest is:

1. First generate a schedule r = (gl, r) to maximize the degree of parallelism.

2. Then determine the spatial morphism 92 of domain morphism based on target machine
characteristics such as memory and processor organization, communication cost, etc.,
or use a default function as shown above.

3. The loop transformer is simply h = (g1,g2, r).

4. Finally perform symbolic program transformation, given the source loop nest and loop
transformer h, to obtain the new loop nest. For the formal procedure, please refer to
[111.

The remainder of this paper is devoted to generating r to gain large scale parallelism.

4 Classes of Affine and Piece-Wise Affine Schedules

We call a schedule affine if it is an affine function of the loop indices. We call a schedule

piece-wise affine if the restriction of the function to each subdomain of D and each subset
of S is affine. In the loop restructuring literature, only affine schedules are considered. In
this paper, we consider, in addition, piece-wise affine schedules.

In order to disclss the algorithms for generating suitable schedules, we now classify
them according to two properties: (1) the uniformity of the schedule with respect to the
the set of statements S and the index domain D, and (2) the degree of parallelism in the

transformed Loop Nest.

4.1 Properties of Schedules

Uniformity Let index doma-n D be partitioned into m disjoint subdomains DL., 1 <
k < m; and let the set of statements S be partitioned into n disjoint subsets Sk, 1 < k <
n. The general form of a piece-wise affine schedule 7r defined in Equation (6) consists of

conditional branches, one for each pair of subdomain Di and statement subset Sj, and an
affine expression of the loop indices is on the right-hand side of each branch. We call a

schedule
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1. uniform if m = 1 and n = 1,

2. subdomain-variant if rn > 1 and n = 1, (also called a subdomain schedule)

3. statement-variant if m = 1 and n > 1, or

4. nonuniform if m > 1 and n > 1.

Degree of Generated Parallelism As defined in Equations (3) and (6), the dimension-
ality of El, the temporal index domain, indicates the number of levels of sequential loops in
the transformed loop nest. Hence a schedule 7r would generate a target loop nest with more
levels of parallel loops and thus potentially more parallelism if E1 is of lower dimensionality.
We call the dimensionality of E1 the sequential level of r. Schedules can thus be classified
as:

1. Single-sequential level schedule if E1 ia a subset of the set of natural numbers A(.

2. Multiple-sequential level schedule if E1 is a subset of Af", where n is a positive integer
and n < d, the dimensionality of the original loop nest.

3. Mixed schedule if El can be of different dimensions for each pair of subdomain Di
and statement subset Sj. Such a m~xed schedule will result in transformed programs
consisting of imperfectly nested loops.

4.2 Classification and Functional Form of Schedules

Classification Clearly, the uniformity of 7r and the dimensionality of 7r are two orthog-
onal properties, except that a mixed schedule cannot be uniform. Thus there are all to-
gether eleven (4 * 3 - 1) classes of affine and piece-wise affine schedules. The classes and
their acronyms ranging from single-sequential level uniform schedules to mixed nonuniform
schedules are given below:

Single-Sequential Multiple-Sequential Mixed

Level (SSL) Level (MSL)

Uniform (U) SSL-U MSL-U

Subdomain (SD) SSL-SD MSL-SD Mixed-SD

Statement-Variant (SV) SSL-SV MSL-SV Mixed-SV

Nonuniform (NU) SSL-NU MSL-NU Mixed-NU

Functional Form We now describe the forms of affine and piece-wise affine schedules by
using matrix and vector notations. Let r(S) for a given S in S be a constant scalar. Let d
be the dimensionality of the index domain of the source loop nest.
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Uniform Schedule:

ir(I, S) = (TI, r(S)), I E D, S E S, (7)

where T is a constant l-by-d matrix and I is the sequential level of the schedule 7r.

Subdomain Schedule:

r(I,S)= ... I , IED, SES, (8)

I E D,- (TmI, rm(S))

where Ti, 1 < i < m, is a constant li-by-d matrix and Ij is the sequential level of the part
of the schedule defined over Di.

Statement-Variant Schedule:

s E S. - (TjI, r(S))

S E S,,- (TI, r(S))J

where Ti, 1 < i < n, is a constant li-by-d matr;x and Ii is the sequential level of the part of
the schedule defined over Si.

Nonuniform Schedule: I(S E Sj) +(TiiI,Tri(S))1

(I E DI) -- .

I (S E S)-. (TiI, r(S))

7r(I, S)= ... I D, SES, (10)

(SE Si) (TmI, rm(S)) 1
(I E D m) (S E S ) (Tm I, rm(S))J

where Tii, 1 < i < m and 1 < j <_ n, is a constant lij-by-d matrix and li is the sequential
level of the part of the schedule defined over Di and Si.

The linear term TI, I E D, determines the form of the sequential loops in the trans-
formed loop nest, which includes nesting structures, bounds, and possibly additional pred-
icates to guard the loop body. The constant terms r(S) determine the orders of the state-
ments in the transformed loop body.
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4.3 Examples of Different Classes of Schedules

We now give some examples of different classes of schedules. We first show that loop vec-
torization, interchanging, permutation and skewing are special cases of multiple-sequential
uniform schedules.

Example 1: Loop Vectorization Let loc be a function from S to V that returns the
position of the statement S in the source loop nest. Suppose a dependence test says that
m innermost loops can be parallelized. The schedule for the so-called loop vectorization of
the d - m outermost loops is of the following form, where d is the dimensionality of the
index domain of the loop nest:

ir(I, S) = (il, i 2 ,..., id-m, 1oc(S)), (11)

V(1)

i.e. T... , and (12)
v(d - m)

r(S) = loc(S), (13)

where each V(k) is a vector of length d with k-th element being 1 and all other elements
being 0.

Example 2: Loop Interchanging and Permutation Loop interchanging and loop
permutation [1, 2, 3, 7, 34, 35, 37] is a process of switching inner and outer loops. Suppose
Loop Nest 1 after loop interchanging or loop permutation becomes

DO (ip, =I,, up,){
DO (... )I

DO (iPd = lp1, Upd){

body }

where (p1,P2,...,Pd) is a permutation of (1,2,...,d). Also suppose the m innermost loops
are parallelizable. The schedule 7r has the form:

7 (1, S) = (ipl , iP2, . . . , ird_, , I oc(S)), (14)

i.e. T and (15)
V (pd-rn)

r(S) = foc(S), (16)

where each V(k) is the same as defined :vi Example 1.
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Example 3: Loop Skewing This operation transforms Loop Nest 1 as follows: shifting
index in with respect to index in, 1 < m < n < d, by a factor of f, where f is a positive
integer, replacing In with the expression (In + im * f), replacing u, with the expression
(u. + im * f), and replacing all occurrences of i. in the loop with the expression (i -im * f)
[34, 37]. The transformed loop nest is of the form:

Loop Nest 7

DO (il = 11, ul)

DO (in - ln + im * f, un + im * f){

DO (id = ld, Ud) {

same loop body but with i. being replaced by (in - im* f) }}

The schedule for such so called loop skewing is of the form:

7r(I, S) = (ii,..., im,..., in+f*jm id, Ioc(S)), (17)

V-th element

V(1

i.e. T= V(n) + f V(m) , and (18)

V(d)

r(S) = loc(S), (19)

where each V(k) is the same as defined in Example 1.

Example 4: Single-Sequential Level Uniform Schedule

Loop Nest 8

DO (i= 1,n)

DO (j =1, n) {
S, A(i, j) =B(i, j- 1) + i

S2: B(ij)= A(i- 1,j)+ j}}

A single-sequential level uniform schedule

ir((i,j, k), SI) = (i, 1), and (20)

7r((i, j, k), S2 ) = (i, 0), (21)

will transform Loop Nest 8 into
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Loop Nest 9

DO (i= 1,n){

DOALL (j =,n){

S 2 : B(i,j) = A(i- 1,j)+ j

S1 : A(i,j) = B(i,j- 1)+i }}

Example 5: Multiple-Sequential Level Uniform Schedule

Loop Nest 10

DO (i = n - 1,1,-i){

DO (j = i + 1,n){

DO (k=i,j){

S1 : IF(i+ 1 = k)B(i,j,k)= C(i+ 1,j,j)

S 2 : IF(i+ 1 < k) B(ij,k) = B(i+ 1,j,k)

S3 : IF(i+j+1 < 2k)C(i,j,k)=C(i,j,k- l)+B(i,j,k)}} }

A two-sequential level uniform schedule

r((i,j, k), S) = ((-i, k), Ioc(S)) (22)

will transform Loop Nest 10 into

Loop Nest 11

DO (i= 1-n,-1){

DO (k = -i, n){

DOALL (j=l-i,n){

S : IF((-i + 1 = k) A (k < j)) B(-i,j,k) = C(1 - i,j,j)

S2: IF((-i+ 1 <k)A(k <j))B(-i,j,k)= B(1 -i,j,k)

S3 : IF((-i+j+1<2k) A(k<j))

C(-i,j, k) = C(-ij, k - 1) + B(-i,j, k) } ) }

Example 6: Mixed Statement-Variant Schedule Consider Loop Nest 10 again. The
following schedule

7r (ijk),S) =S 3 -* (-k), oc(S)) (3r((i'j'k)S)={ = )else -+ (-i, Ioc(S)) (23)

transforms Loop Nest 10 to Loop Nest 12 below, which consists of imperfectly nested loops:
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Loop Nest 12

DO (i=1-n,-1){

DOALL ((j = 1 - i, n), (k = -i, n))

S 1 : IF((-i+ 1 = k) A (k < j)) B(-i,j, k) = C(1 - i,j,j)

S2: IF((-i+ 1< k) A (k < j))B(-i,j,k) = B(1 - i,j,k)}

DO (k = -i, n) {

DOALL (j=1-i,n){

S3: IF((-i+j+l <2k) A(k<j))

C(-i,j,k) = C(-ij,k - 1) + B(-i,j,k) } }

Example 7: Single-Sequential Level Subdomain-Variant Schedule Another pos-
sible transformation of Loop Nest 10 is the schedule:

r((i, j, k), S){ i + j - 2k < 0 -* (-2i + j + k, ' (S)) (24)
i+j-2k>0--(-i+2j-k, Ioc(S)) '

which transforms Loop Nest 10 into:

Loop Nest 13

DO (t = 2,2n- 2){

DOALL (i = n-,1,-1)

DOALL (j=i+1,n){
$SII: IF((2t+3i-3j>0) A(t+i-j-l=0))

B(i,j,t + 2i - j) = C(i + 1,j,j)

S12: IF((2t+3i-3j> 0)A(t+2i-2j+l=0))

B(i,j,-t- i+ 2j) = C(i + 1,j,j)

S21 : IF((2t+3i-3j>0) A(t+i-j-1>0))

B(i,j,t + 2i- j) = B(i + 1,j,t + 2i- j)

S22 : IF((2t+3i-3j> 0)A(t+2i-2j+1<0))

B(i,j, -t - i + 2j) = B(i + 1,j, -t - 2i + 2j)

S31: IF((2t+3i-3j>O)A(2t+3i-3j-1 >0))

C(i,j,t + 2i - j) = C(i,j,t + 2i- j - 1) + B(i,j,t + 2i- j)

S32: IF((2t+3i-3jO)A(2t+3i-3j+1 <0))

C(i,j,-t - i + 2j) = C(i,j,-t - i + 2j - 1) + B(i,j,-t,-i+ 2j) } }}

Since there are two affine functions for disjoint subdomains of the index domain of the loop
nest, each statement in Loop Nest 10 results in two guarded statements in the transformed
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loop nest. In fact Loop Nest 10 is part of the dynamic programming code presented in
Section 8. As one can see, an SSL-SD schedule can result in code of considerable complexity.
It would be a very tedious and error-prone process for a user to write the code by hand.
But a compiler can generate the new loop nest, given the schedule, and the original loop
nest mechanically.

5 Algorithms for Generating Single-Sequential Level Sched-
ules

Our algorithms for generating the various single-sequential level schedules are based on
Quinton's algorithm for generating SSL-U schedules [13, 29, 30]. To make the paper self-
contained, we first review Quinton's algorithm. We then present two algorithms, one for
generating SSL-SD schedules and the other for SSL-SV schedules.

5.1 Previous Work: Uniform Scheduling Algorithm

Quinton's approach addresses the analysis and mapping of linear recurrence equations [13,
29, 30]. We formulate Quinton's algorithm in the context of loop transformations.

5.1.1 Problem Formulation

Constraints Derived from Data Dependences For an SSL-U schedule
r(I, S) = (TI, r(S)), where T is a row vector, the inequality

(TJ, r(S 2 )) - (TI, r(Si)) >- 0, (25)

must hold for all index tuples I and J in index domain D and statements S1 and S 2 in
S such that Sj@I # S2@J. We first focus on the problem of obtaining T satisfying the
following more stringent condition:

TJ - TI = T(J - I) > 0 (26)

for each dependence S1 @I =* S2 0J. If such T exists, then Equation (25) also holds for all
dependences S@I * S 20J due to the lexicographical ordering ">-" regardless of what r is.
In this case, the ordering among statements can be arbitrary. How to obtain T satisfying
less stringent conditions, and use r, in addition to T, to preserve the ordering imposed by
dependences, will be discussed in Section 5.2.

Space of Dependence Vectors It is clear that in the case of uniform schedule, depen-
dence vectors J - I are sufficient for obtaining T. We now formulate the set of dependence
vectors for conditional statements.
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Let D be an index domain and P be the predicate in a conditional statement S. We
define the index domain of statement S to be D under the restriction of P, denoted by DIP:

DIP = {I I I E D, and P(I) is true}. (27)

For the rest of the paper, we consider only flow dependence in Loop Nest L. Anti-dependence
and output dependence can be treated similarly. In this case, the set of dependence vectors
from statement S1 to S2 in Loop Nest L, denoted by V(SI, S2), is [23]:

V(S 1, S2) = {J - I II E (D.P1 ), J E (DJ.P2), and X(I) = Y(J)}. (28)

Input System As described before, each dependence relation S.OI =: S 2@J defines an
inequality T(J - I) > 0 that row vector T must satisfy. We call the set of all constraints
on T the input system, denoted by C:

C = {T(J - I) > 0 I there exist statements S and S2 in S, and index tuples

I and J in D, such that SGI :, S2 @J}

= {T(J - I) > 0 there exist statements S and S2 in S, such that

(J - I) E V(S, S 2 )}.

Polyhedra and Polytopes There can be many dependence vectors that need to be
considered, and they can be infinitely many when the loop bounds are unknown at compile
time. We need to rely on a technique that decomposes a polyhedron into vertices and
extremal rays [13, 30, 32] to manage the complexity of the algorithm. We first define what
a polyhedron is.

Let A be a c-by-d matrix and B be a column vector of length d. Let Z be the set of
rationals. A polyhedron is a subspace of the d-dimensional vector space Zd that can be
expressed as {I I AI > B} [32]. A bounded polyhedron is called a polytope [32].

Constraints on the Input System In the loop restructuring literature, only rectangular
and trapezoid index domains of loop nests are considered [6, 34]. Note that rectangular and
trapezoid index domains are special classes of polyhedra [23]. In order to obtain uniform
schedules systematically, Quinton restricts the index domain of each recurrence equation
to be a polyhedron and all subscript functions (called index mappings in [30]) to be affine
expressions of the indices used in defining the index domains. In Fortran like programs,
the above restriction is translated to perfectly nested loops where loop bounds at one level
may depend on the outer levels, with the loop body consisting of conditional statements
where all the predicates of conditionals and all subscript functions are afline expressions of
the loop indices. Under these restrictions, Quinton shows that [30] the set V(S 1 , S2) of the
dependence vectors from statement S to S2 is a d-dimensional polyhedron, where d is the
dimensionality of the index domain of the loop nest.
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Figure 1: Point (1,0) is the vertex and two vectors (1,2) and (2,1) are the extremal rays.

5.1.2 Decomposing a Polyhedron into Vertices and Extremal Rays

We now discuss how to represent polyhedron V(S 1, 52) by its vertices and extremal rays.

Vertices and Extremal Rays Any polyhedron can be decomposed into a finite set
of vertices and extremal rays [321. (Since a line can be interpreted as two rays in opposite
directions [32], vertices and extremal rays are sufficient for polyhedra decomposition.) Here,
we use the following example to show what vertices and extremal rays are. For formal
definitions, please refer to [32]. Consider the polyhedron P specified by two inequalities:
Pe = {(x,y) 2x - y 2, and 2y - x > -1}. Point (1,0) is the vertex and two vectors
(1, 2) and (2, 1) are the extremal rays of P, as shown below:

Algorithm for Polyhedron Decomposition Since the algorithm for obtaining subdo-
main schedules (to be discussed in Section 5.3) relies on the algorithm for decomposing a
polyhedron into vertices and rays, we now review the decomposition algorithm presented in
[13].

Let Q be a polyhedron defined by Q = {K I AK > B}, where A is a c-by-d matrix
and B is a column vector of length c (d is the dimensionality of index domain D and
c is the number of constraints). If B is a zero vector, then we call Q a homogeneous
polyhedron, otherwise, a nonhomogeneous polyhedron. A nonhomogeneous polyhedron has

a corresponding homogeneous polyhedron. Let h be a scalar variable. Let Qh = [K]

[A,-B] [ K 0, h > 0}, where [ K ]is the vertical concatenation of column vector K

and scalar h, and [A, -B] is the horizontal concatenation of matrix A and column vector
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B. Then Qh defines the corresponding homogeneous polyhedron of Q. A ray [R] of Qh

implies that R is a ray of Q if h = 0, or R is a vertex of Q if h > 0. Therefore, it suffices
to compute the extremal rays of a homogeneous polyhedron, and then obtain the vertices
and extremal rays for the corresponding nonhomogeneous polyhedron.

Algorithm ER (Obtaining Extremal Rays of a Homogeneous Polyhedron)
The algorithm starts with an initial set 1? of rays which can be easily generated. A succession
of transformations on 'R are then performed, one for each constraint in the system. The
ordering in which the constraints are chosen does not affect the correctness of the result. In
each transformation, new 7Z is computed according to the projections of the current rays in

7Z on C as described below, where C [ K ] > 0 is the current selected constraint:hJ

1. IZo I{R R JZ, CR = 0};

2. 7+ -{R I R E 7Z,CR > 0};

3. I { R I R E I, CR < 0};

4. 7Z -- 1ZoU " + U {(alR1 + a 2 R 2 ) I R1 E IZ+,R 2 E IZ-, 01 > 0,a 2 > 0,
C(atR 1 + 0 2R 2 ) = 0}.

5.1.3 Linear Programming Formulation

After polyhedron decomposition, each point in polyhedron V(S, S2) can be expressed as the
sum of a convex combination of the vertices and of a positive combination of the extremal
rays of V(SI, S 2 ) [32]. Based on this property, Quinton shows that [29, 30] Equation (26)
holds for all dependence vectors J -I in V(SI, S2 ) if and only if the following two conditions
hold:

for all vertex V of V(S, 2), TV > 0, and

for all extremal ray R of V(S 1 , S2), TR > 0.

By Quinton's theorem, the input system C defined in Equation (29) can be simplified to:

{TV > 0 I for all vertex V of V(S1 , S2), where S, and S2

are two statements in S such that S, =* 2} (31)

U {TR > 0 for all extremal ray R of V(S1, S2), where S1 and S2

are two statements in S such that S, =: $2}.

Consequently, the row vector T of length d, which defines an SSL-U schedule of a loop nest,
can be obtained by linear programming, where d is the dimensionality of the index domain
of the loop nest. The dimensionality of the linear programming system is d, and the number
of constraints is the sum of the number of vertices and extremal rays.
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5.2 An Algorithm for Statement Reordering

Having reviewed the algorithm for generating an SSL-U schedule with arbitrary statement
reordering function r, we now discuss how to obtain an SSL-U schedule with statement
reordering terms: ir(I, S) = (gl(I), r(S)), where g, is the temporal morphism defined in
Equation (3), and r is the statement reordering function defined in Equation (4). The
method can be modified easily to obtain the statement reordering functions for other single-
sequential level schedules, i.e. SSL-SD, SSL-SV and SSL-NU.

The original input system for obtaining a schedule 7r(I, S) = (g,(I), r(S)) should be:

C = {(gi(J), r(S 2)) >- (gi(I), r(S1 )) Ithere exist statements S, and S2 in S,

and index tuples I and J in D, such that S10I =:, S2 @J}.

To solve for g, and r separately in two steps, the formulation is developed as follows.
We start with the notion of minimal target difference vectors.

Minimal Target Difference Vector We define r to be the function space [D - Efl,
where E1 is a one-dimensional temporal index domain, and define Z to be the set of ra-
tionals. We define a second order function I(f, S1, S2) to be the minimal target difference
vector (in the sense of lexicographical ordering on elements of Ej) ranging over the image
of the set of dependence vectors V(S 1 , S2) defined in Equation (28) under function f E r:

y : rxsxs--+z (33)

(f, S1, S2) = min{f(K) I K E V(S 1 , S2)}. (34)

It is easy to see that condition 1(g1, S1, S 2 ) > 0 holds if and only if gl(J - I) > 0 holds
for all (J - 1) E V(S 1 , S 2 ).

Input Systems for g, and r Due to the lexicographical ordering >-, condition
(gi(J),r(S2 )) >- (g,(I),r(Si)) in Equation (32) holds for all (J - I) E V(SI,S 2) if and
only if either i(g,SI, S2) > 0 holds or both P(g 1 ,S 1 ,S 2 ) = 0 and r(S 2 ) > r(SI) hold.
Consequently, as far as the statement reordering function r is concerned, the dependences
S1 =* S 2 where A(1giS1, S2 ) > 0 do not provide any constraint on r. Only for those
dependences S => $2 such that A(g1, S1, S2) = 0, the conditions r(SI) < r(S 2 ) must hold.
So the algorithm for generating SSL schedules can start out with a less stringent criterion
p(gi, S1, S2) _> 0 for all pairs of statements S1 and S 2 in S such that S1 = S2 to find gj,
and follow by the criterion r(SI) < r(SI) for those dependence relation S => S2 where

,S1, S2) = 0.

From the above discussion, we know that the input system defined in Equation (32)
can be separated into two parts, one for temporal morphism g, and the other for statement
reordering function r:

for 91 : C, = {/(g, S1, S2 ) _ 0 1 there exist statements Si and S2 in S, (35)

such that S 1 =i S2} ,
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Cf = {r(SI) < r(S2) I there exist statements S and S2 in S,for r :(6
such that S * S2 and p(gl, S1, S2) = 0}.

The algorithm discussed in Section 5.1, and those to be discussed in Section 5.3, 5.4,
and 5.5 can be used to obtain temporal morphism gi from the input system specified in
Equation (35). We now discuss how to obtain statement reordering function r from the
input system specified in Equation (36) given a temporal morphism gl.

Partial Ordering and Topological Sort To obtain statement reordering function r
given a temporal morphism gl, we need the notion of partial ordering [16]. A partial order
on a set S is a binary relation "<" that is transitive and irreflexive, i.e. there cannot be any
cyclic relations x < ... < x for all elements x E S. For the purpose of statement reordering,
we define S to be the set of statements S and we say S < S 2 , i.e. statement S must be in
front of statement S 2 in the transformed loop body, if S * S2 and A(gl, S1, S2 ) = 0.

If S has a partial ordering, then topological sort can produce a linear ordering of the
statements [16], which defines r. If S does not have a partial ordering, e.g. if there are
cyclic relations S1 < S2 and S2 < S1, then there cannot be any r that will satisfy both
r(S 1 ) < r(S 2 ) and r(S 1 ) > r(S 2 ). In this case, the given temporal morphism gl should be
rejected.

5.3 Subdomain Scheduling Algorithm with Bounded Search Space

This section presents an algorithm for generating SSL-SD schedules. The hard part of
finding a subdomain schedule for a given loop nest is to determine where the subdomain
boundaries are. In this section, we present an algorithm which searches through a bounded
space for possible hyperplanes that partition the domain, and comes up with affine sched-
ules, one for each subdomain. Since the complexity of this method is too high, in Section 5.4
we describe a heuristic that first makes guesses at possible subdomain boundaries by un-
bounded inside-out enumerative search, and then obtains a subdomain schedule by linear
programming with given subdomains.

5.3.1 Problem Formulation

Constraints Derived from Data Dependence For an SSL-SD schedule defined in

Equation (8), the inequality

(TiJ, ri(S2 )) - (TiI, ri(S1 )) >- (37)

must hold for all index tuples I E Di and J E Di, 1 < i,j _ m, and statements S1 and S2

in S such that S1@I #. S2@J, where Ti and Tj are row vectors of length d. We focus on
the problem of obtaining Ti satisfying the condition

TjJ- TJI=-Ti, TA _0, (38)

20



which is the first step in obtaining an SSL-SD schedule. This step will be followed by a
topological sort to find the statement reordering function as discussed in Section 5.2.

Since row vector T can be different from Ti, Equation (38) cannot be rewritten as
T(J - I) 2! 0. Consequently, dependence vectors are not adequate for obtaining subdomain
schedules. A new representation of a dependence relation is necessary.

Dependence Index pairs We now introduce a new notion of dependence relations. If
dependence S1 @I #- S2@J exists, then we call (I, J) a dependence index pair from statement
S to $2.

Space of Dependence Index Pairs Similar to the set of dependence vectors V(S 1, S 2)
defined in Equation (28), we formulate the set of dependence index pairs from statement
S1 to S 2 , denoted by P(S 1 , S2), as:

'P(S 1 ,S 2) = {(I,J) I E (DiP1),J E (DIP2), and X(I) = Y(J)}. (39)

It is easy to see that, under the restrictions discussed in Section 5.1, P(SI, S2) is a (2d)-
dimensional polyhedron, where d is the dimensionality of the index domain of the loop
nest.

Statement Reordering In Section 5.2, we discuss how to obtain a statement reordering
function r given an SSL-U temporal morphism gi. In fact, all formulations in Section 5.2
also hold for other classes of gj, i.e. SSL-SD, SSL-SV and SSL-NU, except that we need
to use the set of dependence index pairs P(S1 , S2) to replace the set of dependence vectors
V(5 1, $2) in the formulation.

Let r, El, Z be as defined in Section 5.2. We define a second-order function p(f, S1, S 2)
to be the minimal target difference vector ranging over the vectors f(J) - f(I) where
(I, J) E P(S 1 , 52) and f E r:

ji(f, S1, S2) = min{f (J) - f(I) I (I, J) E *P(S1 , S2)}. (40)

Input System The input system for obtaining an SSL-SD temporal morphism gi consists
of the following constraints:

C = {[-Ti, Tj[] _>01 there exist statements S, and S 2 inS, such that

(I,J) E Q(S 1 ,S 2 ,i,j)}, where (41)

Q(SI,S 2, i,j)= {(1,J) I (I,J) E P(SI,S 2),I E Di, J E Dj}.

Let B be a row vector of length d and c be a scalar. Let Z be the set of rationals. A
hyperplane is a subspace of the d-dimensional vector spice Zad that can be expressed as

{I I = c}. In order to obtain subdomain schedules systematically, we restrict that
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the subdomains are separated by hyperplanes. Under this restriction, each subdomain Di,
1 < i < m, is a d-dimensional polyhedron, and each Q(Si, S2, i,j) defined in Equation (41)
is a (2d)-dimensional polyhedron.

Again, we need to represent each polyhedron Q(SI, S2, i, j) by its vertices and extremal
rays. However, since polyhedron Q(Si, S2, i,j) defined in Equation (41) is specified by two
unknown subdomains Di and Di, Algorithm ER of Section 5.1 is not directly applicable.
So the key point is to do polyhedra decomposition under unknown constraints. Then
the input system defined in Equation (41) can be simplified to another system with all
dependence index pairs being replaced by vertices and extremal rays as discussed before.
In the following, we first use a very simple example to show the basic idea of doing this.
We then present the formal solution.

5.3.2 Basic Idea

We take the following loop whose index domain D is a one-dimensional interval domain
[l, u] as an example:

Loop Nest 14

DO (i=1,u){

S.,: IF(i E [l, u1) A(10) =

S2: IF(iE [12 , u 2]) ... = A(10)

where 1, u, 11, U1 , 12 and u2 are integer constants or variables under the conditions [11, ul] C
[1, u] and [12, u2] C [1, u]. For this example, P(S 1 , S2), defined in Equation (39), is a two-
dimensional polyhedron:

P(SI, S2) = {(i,j) Ei E [11, ul],j E [12, U2], 10 = 10}, (42)

which contains four vertices (11, 12), (11, u2 ), (ul, 12), and (ul, u2 ). Let D, and D2

D, = Dj(i > c) and (43)

DI = DI(i < c) (44)

be two subdomains of D separated by the hyperplane i = c, where c is an unknown scalar.
Under D1 and D2 , polyhedron P(S1 , S2 ) is partitioned into four disjoint parts Q(Sl, S2,1,1),
Q(S 1 , S2, 1, 2), Q(S1, S2,2,1), and Q(SI, S2, 2, 2) as defined in Equation (41), where

Q(SI,2, 1, 1) = {(i,j) I i E [11 ,ui],j E [12, u2 ],i > c,j >_. c}, (45)

and others have similar formulation. In the following we let Q11 = Q(SI, S2, 1, 1).
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Figure 2: Bounded Search Space

Bounded Search One way to find the vertices of Q11 is to try all possible c values. For
each c, the vertices of Qii can be obtained by Algorithm ER of Section 5.1. However, there
can be too many c to be searched, or even infinitely many if the loop bounds are unknown
at compile time. In fact, for any c ralue, a vertex (x, y) of P(Si, S2) implies that

1. (x,y) is a vertex of Q11 if x > c and y > c,

2. (x, c) is a vertex of Qii if x > c and y < c < u2, as shown if Figure 2(a),

3. (c, y) is a vertex of Qn if x < c < ul and y > c, as shown if Figure 2(b),

4. (c, c) is a vertex of Q11 if x < c < ul and y < c < u2. as shown if Figure 2(c), or

5. Q11 has no vertex if c > ul or c > u2.

Therefore, based on the relative values of x, y and c, there are four possible vertices of Q
from a vertex (X, y) of P(S1 , S2). Note that three of the four possible vertices of Q are

parameterized with unknown scalar c. So the basic idea is that the search space of the
partitioning hyperplanes can be bounded if parameterized vertices and extremal rays are
Used.

Nonlinear Programming With parameterized vertices and extremal rays, the input
system defined in Equation (41) will become a nonlinear system. Hence bounded search

and nonlinear programming are required to obtain the partitioning hyperplanes and the
schedule for each disjoint subdomain.

We now present the formal solution. We first focus on the case when there is one

partitioning hyperplane. The more general cases of multiple hyperplanes are discussed
later.
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5.3.3 One Partitioning Hyperplane

A partitioning hyperplane can be expressed as BI = c, where B is an unknown row vector of
length d and c is an unknown scalar. In the case of one partitioning hyperplane, an SSL-SD
schedule can be formulated as follows, again ignoring the statement reordering terms for

the moment:

, (I E D) A (BI > c) -* TI
7r (I, S) - ( D)(Ic-T1j(46)((I ED)^A (BI < C) T2I

According to subdomains D, = J2BI > c) and D 2 = 14BI < c), polyhedron Q(Si, S2 , 1, 1)
defined in Equation (41) is:

Q11 = Q(S 1 , S2 , 1, 1) = P(S 1 , S2 )1((BI > c) A (BJ > c)). (47)

Polyhedra Decompasition Under Unknown Constraints Again, we need to rep-
resent Q11 defined in Equation (47) by its vertices and extremal rays. As described in
Section 5.1, this is equivalent to finding the ext.emal rays of polyhedron Qh, which is the
corresponding homogeneous polyhedron of Q11:

Qh = PhI((BI [ 0) A (B 2 [ K] ) 0)), (48)

where Ph is the corresponding homogeneous polyhedron of P(S 1 , S2 ), and B1  h

and B2 [K] > 0 are the homogeneous representations of BI> c and BJ > c respectively,

i.e.

K = [s ~(49)

B1 = [B, 6, -c], and (50)

B 2 = [{6, B, -c]. (51)

Note that since row vector B and scalar c given in Equation (46) are unknown, row vectors
B and B 2 are also unknown. Recall that Algorithm ER of Section 5.1 iterates over the
set of input constraints. Therefore, in obtaining the extremal rays of Qh, we can first
obtain the set of extremal rays of Ph, denoted by ?Z. Two more iterations are required to

obtain the extremal rays Of Qh from 1Z, one for each unknown constraint B[] h  > 0 and

B2 [1 > 0.
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Bounded Search Let 1? be the set of extremal rays of Ph, 'RI be the set of extremal rays

of Ph4(B I 0), and IZ2 be the set of extremal rays of Qh defined in Equation (48).

We have the following lemma:

Lemma 1 The number of possible sets 1 and RZ2 derived from all possible row vectors B1

and B2 is bounded.

Proof. From Algorithm ER, we know that the set I 1 is ob ained according to the pro-
jections of the rays in 1? on BI. Although B1 is unknown, the projection of a vector on
any vector can only be either zero, positive or negative. Therefore, based on tie signs of
projections, if there are r rays in 7?, then there are at most 3' possible sets "RI. And since
a ray in 1IZ is generated from either a ray or a pair of rays in 7?, each set 7 I contains a
finite number of rays. Let q be the maximal number of rays in a: sets TZI. Clearly, there
are at most 3 r+q possible sets 7Z2 .

Nonlinear Formulation of Extremal Rays Since the values of the projections are
unknown, some rays in 71Z need to be specified by unknown scalars. For example, a ray in
lZI generated from two rays R, and R 2 in 7? is a linear combination o, R 1 and R 2 :

aIR1 + 0 2 R 2 , (52)

where a, and a 2 are positive variables satisfying the nonlinear condition BI(alR1 +a 2R 2 ) =

0 as described in Algorithm ER.

Similarly, a ray of Qh generated from two linear rays (a, R1 + a 2 R 2 ) and (a 3 R 3 + a 4 R 4 )
in IZ1 is a nonlinear combination of Ri, 1 < i < 4:

as(aiR1 + a 2 R 2 ) + C'6(a 3 R 3 + a 4 R 4 ), (53)

where a. and a 6 are positive variables satisfying the nonlinear condition B 2(as(aIRI +
a 2 R 2 ) + a 6 (Cf3 R 3 + a 4 R 4 )) = 0.

Nonlinear Constraints With unknown T1 , T 2 , B1 , B 2 and a, we may have the following
nonlinear inequalities that constitutes a system for obtaining an SSL-SD schedule defined
in Equation (46):

[-T,T 21(ots(al R 1 + 0 2 R 2 ) + a 6 (a 3 R 3 + a 4 R4 )) 2! 0, (54)

BI(aRI + a 2 R 2 ) = 0, (55)

B1(a 3 R3 + a 4 R 4 ) = 0, and (56)

B 2 (as(aiR, + a 2 R 2 ) + 6 (a 3 R 3 + a 4 R 4 )) = 0. (57)

Equation (54) is a constraint for T and 72, which specify the mapping of a subdomain
schedule, and Equations (55), (56) and (57) are constraints for B and c, which specify the
partitioning hyperplane of a subdomain schedule. Therefore, the order of the nonlinear

constraints is three.
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Nonlinear Systems To summarize, given one partitioning hyperplane, there is a bounded
number of sets of parameterized extremal rays, where each extremal ray can be specified
by a nonlinear expression of order two or less. Each set of parameterized extremal rays
corresponds to a possible partition configuration. And we need to solve a nonlinear system
of order three for each possible partition configuration to obtain T1 , T2, B, and c, which
define a subdomain schedule given in Equation (46). Clearly, many partition configurations
would be invalid, and there can be one or more suitable partition configuration, or none.

From the above discussion, we have the following theorem:

Theorem 2 An SSL-SD schedule with one partitioning hyperplane on the domain can be
obtained by enumerative sec& ch through a bounded search space, at each instance of which
nonlinear programming of order three is required to obtain the partitioning hyperplane and
the schedule for each subdomain.

5.3.4 Multiple Partitioning Hyperplanes

We now consider the cases with more than two subdomains separated by multiple parti-
tioning hyperplanes. From the above case, it is easy to see that if there are p partitioning
hyperplanes, then polyhedron Qh defined in Equation (48) would be specified by 2p un-
known constraints, and each extremal ray of Qh would be of order 2p or less. Therefore,
the order of the systems for obtaining an SSL-SD schedule would be 2p + 1. We thus have
the following corollary:

Corollary 3 An SSL-SD schedule with p partitioning hyperplanes on the domain can be
obtained by enumerative search through a bounded search space, at each instance of which
nonlinear programming of order 2p + 1 is required to compute the partitioning hyperplanes
and the schedule for each subdomain.

5.4 A Heuristic Algorithm for Generating Subdomain Schedules

Inside-Out Enumerative Search We now show that, if the subdomains of a subdomain
schedule are separated by a set of given partitioning hyperplanes, then an SSL-SD schedule
can be obtained by linear programming. We can use inside-out unbounded enumerative
search [18, 19] as a heuristic to generate these partitioning hyperplanes. Let a partitioning
hyperplane be specified by BI = c, where B is a row vector, and c is a scalar. The inside-out
enumerative search starts by setting the bounds of the absolute values of the elements of
row vector B and scalar c to be 1, then 2, 3, etc., until a schedule is found. Hopefully, if
there exists a subdomain schedule, the values of the elements of B and c would be small
and found quickly. And this appears to be the case for many example programs including
the dynamic programming example to be discussed in Section 8.

Linear Programming Formulation If all partitioning hyperplanes are given, then each
polyhedron Q(S;, S2 , i,j) defined in Equation (41) can be decomposed into vertices and
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extremal rays by Algorithm ER of Section 5.1. Therefore, the input system C defined in
Equation (41) can be simplified to the following form:

{[-Ti, Tj]V > 0 for all vertex V of Q(S1, S2, i,j), where S and S2

are two statements in S such that S1 = S 2 } (58)

u {[-Ti, Tj]R > 0 I for all extremal ray R of Q(Sl, S2, i,j), where S and S2

are two statements in S such that S =* $2}.

Consequently, m row vectors Ti, I < i < m, of length d, which define an SSL-SD schedule,
can be obtained by linear programming. The dimensionality of the linear programming
system is m * d, where m is the number of subdomains and d is the dimensionality of the
index domain of the loop nest. We thus have the following theorem:

Theorem 4 Given the partitioning hyperplanes of the index domain D of a loop nest,
an SSL-SD schedule can be obtained by linear programming. The dimensionality of the
linear programming system is m * d, where m is the number of subdomains and d is the
dimensionality of the index domain of the loop nest.

5.5 An Algorithm for Generating Statement-Variant Schedules

Single Statement in Each Partition From the subdomain schedule, we know that it
is hard to find the partition of a domain and the schedule for each subdomain at the same
time. If the partition of the domain is given, then the problem becomes much simpler. This
is also true for obtaining statement-variant schedules. Let s be the number of statements
in a loop body. If s is not too large, then we can consider the extreme case of a statement-
variant schedule that each partition contains only one statement. In this case, the input
system C containing all constraints is:

C={[-TiST[] >01 there exist statements Si and Sj in S, and index tuples

I and J in D such that SiUI =*, Sj@J}. (59)

= / 01 there exist statements Si and S3 inS, such that

(I, J) E P(Si, S,)},

where *P(Si, Sj) is defined in Equation (39).

Linear Programming Formulation Since the vertices and extremal rays of P(Si, Sj)
can be obtained by by Algorithm ER of Section 5.1, the input system C defined in Equation
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(59) can be simplified to:

{[-Ti,Tj]V > 0 for all vertex V of P(Si, Sj), where Si and Sj

are two statements in S such that Si = S} (60)

u {[-Ti, Tj]R > 0I for all extremal ray R of P(Si, Sj), where Si and Sj

are two statements in S such that Si => Sj}.

Consequently, s row vectors Ti, 1 < i < s, of length d, which define an SSL-SV schedule,
can be obtained by linear programming. We thus have the following theorem:

Theorem 5 An SSL-SV schedule of a loup nest, where each partition of statements contains
only one statement, can be obtained by linear programming. The dimensionality of the linear
programming system is s * d, where s is the number of statements and d is the dimensionality
of the index domain of the loop nest.

Algorithm for Generating Nonuniform Schedules Since a nonuniform schedule is a
combination of a subdomain schedule and a statement-variant schedule, it can be obtained
by the algorithms described in Sections 5.3, 5.4 and 5.5.

6 An Iterative Algorithm for Generating Multiple-Sequential
Level Schedules

We now present the algorithm for generating multiple-sequential level schedules. To obtain
an n-sequential level schedule, our approach is to first find n SSL temporal morphisms

gl ... , g n, one at a time, followed by generating the statement reordering function r.
This technique applies to all schedules: uniform, subdomain-variant, statement-variant or
nonuniform.

To describe an iterative algorithm, we need to define a sequence of minimal target
difference vectors similar to the ones defined in Equations (34) and (40).

A Sequence of Target Difference Vectors We first define ri, 1 < i < n, to be the
function space [D -* El x ... x Ef], where each Ej, 1 < j _< n, is a one-dimensional
temporal index domain, and define Z to be the set of rationals.

For uniform schedules, we define a family of second-order functions pi(f, S1, S2), 1

i < d, to be a sequence of minimal target difference vectors (in the sense of lexicographical
ordering on elements of E1 x ... x Ef) ranging over the images of the set of dependence
vectors V(S 1 , S2) defined in Equation (28) under function f E ri:

pui : xSxS-.Z, where

pi(f,S1,$2) = min{f(K) I K E V(S 1 ,S 2)}.
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For subdomain-variant, statement-variant and nonuniform schedules, we define a family
of second-order functions Ai U, S1, S2), 1 < i < d, to be a sequence of minimal target
difference vectors ranging over the vectors f(J) - f(I) where (I, J) E P(S1 , S2) and f E ri:

Pi (f, S1, S 2 ) = min{f (J) - f(I) I (I, J) E P(SI, S2)}. (62)

Iterative Algorithm Similar to the algorithm for obtaining SSL schedules with state-
ment reordering functions as discussed in Section 5.2, the algorithm for generating multiple-
sequential level schedules starts with criterion I(g, S1, S2) _> 0 for all pairs of statements
S1 and S2 such that S1 =€" S2 to generate an SSL temporal morphism gi. We then use
the constraint ji(g, S1, 52) >_ 0 for those dependences S 1  ' S 2 such that p9(g1 , S1, S 2) = 0
to find g2. The same process is iterated until the n-th iteration, 1 < n < d, when the
remaining dependences S1 =: S2 where psn((g9, ... , gn), S1, S2 ) = 0 are not cyclic. In this
case, the set of statements S has the partial ordering defined in Section 5.2. We then use
topological sort to find the linear ordering of the statements.

We summarize the above discussion as the following iterative algorithm for generating
multiple-sequential level schedules: The inputs of Algorithm MSL consist of the set of all
dependences in a loop nest, denoted by C, and the choice of one of the algorithms presented
in Section 5.1, 5.3, 5.4 or 5.5, denoted by A.

Algorithm MS L (,C : a set of dependences, A : an algorithm)

1. i +- 0 (i will be ranging over the loop levels);

2. While i < d and £ contains cyclic dependences, do

(a) i i + 1;

(b) Find an SSL temporal morphism g' by using algorithm A such that (g1, S1, S2 ) _
0 holds for all S = S2 E L;

(c) If such gl does not exist, then the algorithm terminates without returning a
schedule;

(d) Else, L - f{(Si # S2) I (SI =-e S 2) E L such that P(g1, S1,S 2) = 0};

3. (Now L contains no cyclic dependences.) Find a statement reordering function r by
topological sort, such that r(S1) < r(S2) for all (Sl # S2) E L.

Note that the sequential loops in the transformed loop nest generated by Algorithm
MSL are perfectly nested.

7 A Recursive Algorithm for Generating Mixed Schedules

We now present the algorithm for generating mixed schedules. We first discuss the basic
idea of this algorithm.
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Basic Idea Algorithm MSL presented in the previous section for generating multiple-
sequential level schedules treats all the statements in the same way throughout the itera-
tions even though more and more of the dependences become uninformative in obtaining
the sequence gl, ... , gin. Clearly, when some instances of dependence relations are not
considered, a new set of equivalence classes under relation "-" over statements emerges.
As discussed in Section 2, these new equivalence classes can be scheduled separately for the
subsequent iterations. To do this, a tree of temporal morphisms, instead of just a sequence

gll ... , g, will be generated.

Labeling a Tree We use a prefix notation to label each node of the trees of temporal
morphisms, equivalence classes and sets of dependence relations to be defined later. Let the
root of the tree be labeled 1. For a node which is the i-th child of its parent node, we say
the order of this node is i. A node is labeled I o i if I is the label of its parent node and it
has order i. A temporal morphism gl with label 1 is denoted by gl(l), an equivalence class
B with label I is denoted by B(1), and a set of dependences C with label 1 is denoted by
L(l).

Recursive Algorithm The initial inputs of the recursive algorithm for generating mixed
schedules consist of the equivalence class B(1), which contains all statements in S, and the
set 1(1), which contains all dependences in the source loop nest. With inputs B(1) and
£(), the algorithm obtains an SSL temporal morphism g,(l) such that 11(g 1 (1), Sl, S 2 ) 2 0
holds for all (S =* S 2 ) E C(l). Under gi(l), the set of dependences

U(1) = {(S1 = S2) I (S ==* S2 ) E L(l),p(gl(l), S1, S2 ) > 01 (63)

becomes uninformative and should be removed from L(1). A new set of equivalence classes,
denoted by new(l), emerges:

new(l) = {B(l o i) I B(1 o i) is the i-th equivalence class from L(1) - U(1)}. (64)

For each new equivalence class B(l o i), 1 < i < Inew(l)I, the associated set of dependences
£(1 o i) is

1(l o i) = {(S = " 52) I Si E B(l o i), S2 E B(I o i), (S 1 = S2) E (L(1) - U(l))}. (65)

If B(l o i), 1 < i < Inew(1)I, is a dependent block, then the same algorithm is applied
recursively to the new inputs B(1 o i) and C(I o i). The recursive algorithm stops when all
dependent blocks have been broken up and all remaining blocks are independent.

We summarize the above discussion as the following recursive algorithm for generating
mixed schedules: The initial inputs of Algorithm MIX consist of the equivalence class B(1),
the set of dependences L(1), and the choice of one of the algorithms presented in Section 5.1,
5.3, 5.4 or 5.5, denoted by A.

Algorithm MIX (B(l) : an equivalence class, 1(l) : a set of dependences, A : an algorithm)

1. Find an SSL temporal morphism gi(l) by using algorithm A, such that
1A(gl(1), S1, S 2) > 0 holds for all (S1  * 2 ) E L(1);
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2. If such gl(l) does not exist, then the algorithm terminates without returning a sched-
ule.

3. obtain the set new(1) (remove uninformative dependences and generate new equiva-
lence classes);

4. Generate new sets of dependences C(l o i), 1 < i < Inew(l)j;

5. For i E [1, 1new(l)1], if B(l o i) is a dependent block, then MIX(B(l o i),£(1 o i), A).

Statement Reordering We now discuss how to obtain the statement reordering function
r for mixed schedules. Since the algorithm for generating mixed schedules is recursive,
statement ordering is also obtained recursively. Suppose we want to find the ordering among
the statements in an equivalonce class B(l). Let B(l o i), 1 < i < n, be the equivalence
classes in new(l) generated from B(l). Wr can first determine the ordering among these n
equivalence classes, which induces the ordering among statements in different B(l o i), but
not the ordering among statements within the same B(l o i). Since each B(l o i), 1 < i < n,
will be scheduled separately, the ordering among statements in different B(l o i) will never
be changed subsequently. The same process is then applied recursively to each B(l o i),
1 < i < n, to determine the ordering among statements within B(l o i).

The ordering among these n equivalence classes is obtained as follows. Similar to Sec-
tion 5.2, we define a partial ordering "<" over the set of equivalence classes new(l). We say
B(lo 1) < B(lo 2), i.e. equivalence class B(lo 1) must be in front of equivalence class B(lo2)
in the transformed loop body, if there exist statements S1 E B(l o 1) and S2 E B(l o 2) such
that (SI = S2) E L(l) and p(g!(l), S1, S2) = 0.

Due to the way these n equivalence classes are generated from B(l), new(l) always has
this partial ordering. Therefore, topological sort can produce the linear ordering of these n
equivalence classes.

Imperfect Loop Nests For a given statement S, it may belong to a nested level of
dependent blocks B(1), ... , B(l), where B(1) D ... D B(l). Clearly, the schedule of
statement S is Ill-sequential level, where Ill is the length of the label 1:

'r(I S) = (g1i)( ),...-, gai )M M , -r(S)). (66)

Since different statements can belong to different sets of dependent blocks, the sequential
level of 7r(I, S) can be different for different statements. And the sequential loops in the
transformed parallel loop nest can be of any form, i.e. perfectly and imperfectly nested
loops.

When different equivalence classes are scheduled differently, each SSL temporal mor-
phism will be a statement-variant schedule with the partition of statements being these
new equivalence classes. Recall that in Section 5.5, a statement-variant schedule is ob-
tained by allowing each statement to be scheduled differently, but not independently. The
advantage to schedule independently is that the likelihood of obtaining a suitable schedule
with more parallelism increases if each dependent block is considered separately.

31



Example We use the following example to explain Algorithm MIX further. In this ex-

ample, each SSL temporal morphism used in Algorithm MIX is a uniform one.

Loop Nest 15

DO (i=2, n)

DO (j = 2,n){

DO (k 2, n){

S: A(i,j,k)= A(i- 1,k,j)+ B(i - 1,j,k)

S2: B(i,j,k)= B(i,j- 1,j)+C(i- 1,j,k)

S3 : C(i,j,k)=C(i,j,k-1)+A(i,j,k) }}}

The initial B(1) is the set {S1,$2,S3} and £(1) is the set {(S= , Sy) I (x,y) E
{(1, 1), (2,2),(3,3),(2,1),(3,2),(1,3)}. It is easy to check that if gl(1)((i,j, k), S) = i for
all S E B(1), then p(g 1(1),S,, Sy) = 1 for (x, y) in the set U = {(1, 1),(2,1),(3,2)}. And
p(gi(1), S., Sy) = 0 for (x, y) in (x, y) E {(2,2),(3,3),(1,3)}. Consequently, dependences

S, = Sy, (x, y) E U, can be removed and B(1) is broken up into three equivalence classes
B(l o i), 1 < i < 3; each contains a single statement Si.

Since B(1 o 1) is an independent block, the schedule for S1 will be single-sequential
level. Furthermore, S 2 and S3 are in different equivalence classes and they can be scheduled
independently. Let gl(1 o 2)((i,j, k), S)= j and g,(1 o 3)((i,j,k), S)= k. It is easy to check
that p(gi(1 o 2), S2, S2) = I and p(gl(1 o 3), S3, 5 3 ) = 1.

To summarize, the mixed schedule is single-sequential level for S, (two-dimensional
parallelism), and is two-sequential level for S2 and S3 (one-dimensional parallelism) as
shown below:

[S=S1 - (i, 0)1
r((i, j, k), S)= S S 2 --*(i, j, 1) '.(67)

S= S 3 - (i,k,2)

Because 11(g(1), S 1 , S 3) = 0 and statements S, and S3 are in different equivalence classes,
S must be in front of 53 in the transformed loop body. The resulting parallelized program
with imperfectly nested sequential loops is:
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Loop Nest 16

DO (i=2,n){

DOALL ((j = 2, n), (k = 2, n)) {
S1 A(ij,k) = A(i - 1, k,j)+ B(i - 1,j,k) )

DO (j=2, n){

DOALL (k = 2, n){

S2: B(ij, k)= B(i,j - 1,j) + C(i - 1,j, k) } }
DO (k=2, n)f

DOALL (j = 2, n){

S3: C(ij,k)= C(i,j,k- 1) + A(i - 1,j,k) } } }

8 An Application: Dynamic Programming

To illustrate the usefulness of the new scheduling algorithms, we take dynamic programming
as an example, which has sequential complexity 0(n 3 ) for a problem of size n. The source
code is given in Program 17.

Loop Nest 17

DO (i=1,n-1){

C(i, i + 1) = initial - values }
DO (i=1,n-2){

DO (j=i+2,n){

C(i,j) = mini<k<j(h(C(i, k), C(k,j))) } }

This source program is first transformed to the following form in a systematic manner
by applying fan-in and fan-out reductions [10] to reduce potential concurrent accesses of
variables. The result is Program 18:
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Loop Nest 18

DO (i =1,n- 1)1

DO (k = 1, n){

C(i, i + 1, k) =initial - values}}

DO (i =n -1, 1,-1){

DO ( = i+ 1, n){

m = (i + j+ 1)/2

DO (k = ij){I

Sai I F(k <j) A(i, j,k) =A(i, j -1,k)
5 bj IF(i+ 1 =k) B(ij,k) =C(i + 1j,j)

Sb2 : IF(i + 1 < k) B(ij,k) = B(i + 1j,k)

Sj:I F(m = k) C(i, j, k) = hi (A(i, j, k), B(i, j, k),

A(i, j, i+ j - k), B(i, j, i+ji - k))

Sc2 :I F(m < k < j) C(i, j, k) = h2 (C(i, j, k - 1), A(i, j, k),

B(i, j, k), A(i, j, i + j - k), B(i, j, i + j - k))

S,3IF(k =j) C(i,j,k)=C(i,j,k -1)

S,2 F(k =j) A(i,j, k) C(ij,k)}}}

Schedules We wrote three *lisp programs on the Connection Machine CM/2, each with
the control structure generated by a two-sequential level uniform schedule, a mixed statement-
variant schedule and a single-sequential level subdomain schedule respectively. We also have
a sequential Common-Lisp program on the Symbolics to compute the same problem. The
three schedules are given below. For simplicity, we do not give the constant terms r(S) of
function 7r.

two-sequential level uniform schedule:

7r(S, (i, j, k)) = (i- i, k - i)

m: ed statement- variant schedule:

r(S,(i, , k S = Sc2 - (j -i, k -
ir(,(ij~)) I else -~ j - i}

single-sequential level subdomain schedule:

7r (S, (i, j, k)) i {+ j-2k < 0- -2i+ j +k}

Experimental Result The experiment is conducted as follows: we run the sequential
code on the Symnbolics and parallel codes on an 8K-processor Connection Machine with
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3-sequential level 2-sequential level mixed 1-sequential level

n sequential uniform statement-variant subdomain

32 6.8 10.72 2.47 0.87

64 55.0 42.88 9.73 1.73

128 440.0 171.50 39.16 3.48

256 3520.0 686.45 235.70 6.96

512 28160.0 2745.80 1159.24 31.70

Figure 3: Running time in seconds.

ge

10000 a: n = 32
d b: n = 64

c: n = 128 Pe

1000 d: n = 256 , uniform e
e: n = 512 Od

Time(sec) c , od

100 ,/c statement-"
b Ob variantoc

/ , e'

10 da a b d
6a .S" " '

era
1a- subdomain

1 8 64 512 4,K 32K 256K
Virtual Processors Used

Figure 4: Running time vs. problem size.

Symbolics as its host. The results described in Figure 3 and Figure 4 show that the ver-
sion using a single-sequential level subdomain schedule is three orders of magnitude faster
than the sequential code, and is two orders of magnitude faster than the versions using
a two-sequential level uniform schedule and mixed statement-variant schedule. And the

program using a mixed statement-variant schedule is about three to four times faster than

the program using a two-sequential level uniform schedule.
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